Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Immunol ; 210(12): 1925-1937, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2299477

ABSTRACT

COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.


Subject(s)
COVID-19 , Mycobacterium bovis , Animals , Mice , BCG Vaccine/genetics , Recombinant Fusion Proteins/genetics , SARS-CoV-2 , Vaccines, Synthetic , COVID-19/prevention & control , Mycobacterium bovis/genetics
2.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1586548

ABSTRACT

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , SARS-CoV-2 , Zebrafish
3.
BMC Bioinformatics ; 22(1): 1, 2021 Jan 02.
Article in English | MEDLINE | ID: covidwho-1388726

ABSTRACT

BACKGROUND: Protein-peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein-peptide databases and tools that allow the retrieval, characterization and understanding of protein-peptide recognition and consequently support peptide design. RESULTS: We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein-peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein-peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. CONCLUSIONS: Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein-peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia.


Subject(s)
Database Management Systems , Databases, Protein , Peptides/chemistry , Proteins/chemistry , Algorithms , Humans
4.
Front Immunol ; 11: 587615, 2020.
Article in English | MEDLINE | ID: covidwho-976266

ABSTRACT

COVID-19 is a worldwide emergency; therefore, there is a critical need for foundational knowledge about B and T cell responses to SARS-CoV-2 essential for vaccine development. However, little information is available defining which determinants of SARS-CoV-2 other than the spike glycoprotein are recognized by the host immune system. In this study, we focus on the SARS-CoV-2 nucleocapsid protein as a suitable candidate target for vaccine formulations. Major B and T cell epitopes of the SARS-CoV-2 N protein are predicted and resulting sequences compared with the homolog immunological domains of other coronaviruses that infect human beings. The most dominant of B cell epitope is located between 176-206 amino acids in the SRGGSQASSRSSSRSRNSSRNSTPGSSRGTS sequence. Further, we identify sequences which are predicted to bind multiple common MHC I and MHC II alleles. Most notably there is a region of potential T cell cross-reactivity within the SARS-CoV-2 N protein position 102-110 amino acids that traverses multiple human alpha and betacoronaviruses. Vaccination strategies designed to target these conserved epitope regions could generate immune responses that are cross-reactive across human coronaviruses, with potential to protect or modulate disease. Finally, these predictions can facilitate effective vaccine design against this high priority virus.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Computational Biology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
5.
Microbes Infect ; 22(10): 515-524, 2020.
Article in English | MEDLINE | ID: covidwho-779460

ABSTRACT

This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.


Subject(s)
BCG Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/immunology , COVID-19/prevention & control , Epitope Mapping , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL